Sale!

Bioengineering Fundamentals 2nd Edition by Ann Saterbak, ISBN-13: 978-0134637433

Original price was: $50.00.Current price is: $14.99.

Description

Bioengineering Fundamentals 2nd Edition by Ann Saterbak, ISBN-13: 978-0134637433

[PDF eBook eTextbook] – Available Instantly

Publisher: Pearson; 2nd edition (April 28, 2017)
Language: English
624 pages
ISBN-10: 0134637437
ISBN-13: 978-0134637433

For sophomore-level courses in Bioengineering, Biomedical Engineering, and related fields.

A unifying, interdisciplinary approach to the fundamentals of bioengineering.

Now in its 2nd Edition, Bioengineering Fundamentals combines engineering principles with technical rigor and a problem-solving focus, ultimately taking a unifying, interdisciplinary approach to the conservation laws that form the foundation of bioengineering: mass, energy, charge, and momentum. The text emphasizes fundamental concepts, practical skill development, and problem-solving strategies while incorporating a wide array of examples and case studies. This 2nd Edition has been updated and expanded with new and clarified content, plus new homework and example problems.

Table of Contents:

  • Contents
  • Bioengineering Fundamentals
  • Contents
  • Preface
  • What’s New in This Edition
  • CHAPTER 1 Introduction to Engineering Calculations
  • 1.1 Instructional Objectives
  • 1.2 Physical Variables, Units, and Dimensions
  • 1.3 Unit Conversion
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 1.4 Dimensional Analysis
  • 1.5 Specific Physical Variables
  • 1.5.1 Extensive and Intensive Properties
  • 1.5.2 Scalar and Vector Quantities
  • 1.6 Engineering Case Studies
  • 1.6.1 Parkinson’s Disease
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 1.6.2 Mars Surface Conditions
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 1.6.3 Getting to Mars
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 1.6.4 Plasmapheresis Treatment
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 1.6.5 Hospital Electrical Safety
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 1.7 Quantitation and Data Presentation
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 1.8 Solving Systems of Linear Equations in MATLAB
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 1.9 Methodology for Solving Engineering Problems
  • Summary
  • References
  • Problems
  • CHAPTER 2 Foundations of Conservation Principles
  • 2.1 Instructional Objectives
  • 2.2 Introduction to the Conservation Laws
  • 2.3 Counting Extensive Properties in a System
  • 2.3.1 Specifying the Property
  • 2.3.2 Specifying the System
  • 2.3.3 Specifying the Time Period
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 2.4 Conceptual Framework for Accounting and Conservation Equations
  • 2.4.1 Input and Output Terms Describe Exchange of Extensive Property
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 2.4.2 Generation and Consumption Terms Describe Changes in the Universe
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 2.4.3 The Accumulation Term Describes Changes to the System
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 2.5 Mathematical Framework for Accounting Equations
  • 2.5.1 Algebraic Accounting Statements
  • Problem:
  • Solution:
  • 2.5.2 Differential Accounting Statements
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 2.5.3 Integral Accounting Statements
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 2.6 Mathematical Framework for Conservation Equations
  • 2.6.1 Algebraic Conservation Equation
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 2.6.2 Differential Conservation Equation
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 2.6.3 Integral Conservation Equation
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 2.7 System Descriptions
  • 2.7.1 Describing the Input and Output Terms
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 2.7.2 Describing the Generation and Consumption Terms
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 2.7.3 Describing the Accumulation Term
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 2.7.4 Changing Your Assumptions Changes How a System Is Described
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 2.8 Summary of Use of Accounting and Conservation Equations
  • Summary
  • References
  • Problems
  • CHAPTER 3 Conservation of Mass
  • 3.1 Instructional Objectives and Motivation
  • 3.1.1 Tissue Engineering
  • 3.2 Basic Mass Concepts
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 3.3 Review of Mass Accounting and Conservation Statements
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 3.4 Open, Nonreacting, Steady-State Systems
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 3.5 Open, Nonreacting, Steady-State Systems with Multiple Inlets and Outlets
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 3.6 Systems with Multicomponent Mixtures
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 3.7 Systems with Multiple Units
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 3.8 Systems with Chemical Reactions
  • 3.8.1 Balancing Chemical Reactions
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 3.8.2 Using Reaction Rates in the Accounting Equation
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 3.9 Dynamic Systems
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Summary
  • References
  • Problems
  • CHAPTER 4 Conservation of Energy
  • 4.1 Instructional Objectives and Motivation
  • 4.1.1 Bioenergy
  • 4.2 Basic Energy Concepts
  • 4.2.1 Energy Possessed by Mass
  • Problem:
  • Solution:
  • 4.2.2 Energy in Transition
  • Problem:
  • Solution:
  • 4.2.3 Enthalpy
  • Problem:
  • Solution:
  • 4.3 Review of Energy Conservation Statements
  • 4.4 Closed and Isolated Systems
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 4.5 Calculation of Enthalpy in Nonreactive Processes
  • 4.5.1 Enthalpy as a State Function
  • Problem:
  • Solution:
  • 4.5.2 Change in Temperature
  • Problem:
  • Solution:
  • 4.5.3 Change in Pressure
  • 4.5.4 Change in Phase
  • Problem:
  • Solution:
  • 4.5.5 Mixing Effects
  • 4.6 Open, Steady-State Systems—No Potential or Kinetic Energy Changes
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 4.7 Open, Steady-State Systems with Potential or Kinetic Energy Changes
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 4.8 Calculation of Enthalpy in Reactive Processes
  • 4.8.1 Heat of Reaction
  • 4.8.2 Heats of Formation and Combustion
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 4.8.3 Heat of Reaction Calculations at Nonstandard Conditions
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 4.9 Open Systems with Reactions
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 4.10 Dynamic Systems
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Summary
  • References
  • Problems
  • CHAPTER 5 Conservation of Charge
  • 5.1 Instructional Objectives and Motivation
  • 5.1.1 Neural Prostheses
  • 5.1.2 Biomedical Instrumentation
  • 5.2 Basic Charge Concepts
  • 5.2.1 Charge
  • 5.2.2 Current
  • 5.2.3 Coulomb’s Law and Electric Fields
  • 5.2.4 Electrical Energy
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 5.3 Review of Charge Accounting and Conservation Statements
  • 5.3.1 Accounting Equations for Positive and Negative Charge
  • 5.3.2 Conservation Equation for Net Charge
  • 5.4 Kirchhoff’s Current Law (KCL)
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 5.5 Review of Electrical Energy Accounting Statement
  • 5.5.1 Development of Accounting Equation
  • 5.5.2 Elements that Generate Electrical Energy
  • 5.5.3 Resistors: Elements that Consume Electrical Energy
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 5.6 Kirchhoff’s Voltage Law (KVL)
  • 5.6.1 Applications of KVL for Systems with One Loop
  • Problem:
  • Solution:
  • 5.6.2 Applications of KVL for Systems with Two or More Loops
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 5.6.3 Applications of KCL and KVL
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 5.7 Applications of KVL to Bio-Systems
  • 5.7.1 Einthoven’s Law
  • Problem:
  • Solution:
  • 5.7.2 Hodgkin–Huxley Model
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 5.8 Dynamic Systems—Focus on Charge
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 5.9 Dynamic Systems—Focus on Electrical Energy
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 5.10 Systems with Generation or Consumption Terms—Focus on Charge
  • 5.10.1 Radioactive Decay
  • 5.10.2 Acids and Bases
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 5.10.3 Electrochemical Reactions
  • Problem:
  • Solution:
  • 5.11 Systems with Generation or Consumption Terms—Focus on Electrical Energy
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Summary
  • References
  • Problems
  • CHAPTER 6 Conservation of Momentum
  • 6.1 Instructional Objectives and Motivation
  • 6.1.1 Bicycle Kinematics
  • 6.2 Basic Momentum Concepts
  • 6.2.1 Newton’s Third Law
  • 6.2.2 Transfer of Linear Momentum Possessed by Mass
  • Problem:
  • Solution:
  • 6.2.3 Transfer of Linear Momentum Contributed by Forces
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 6.2.4 Transfer of Angular Momentum Possessed by Mass
  • Problem:
  • Solution:
  • 6.2.5 Transfer of Angular Momentum Contributed by Forces
  • Problem:
  • Solution:
  • 6.2.6 Definitions of Particles, Rigid Bodies, and Fluids
  • 6.3 Review of Linear Momentum Conservation Statements
  • 6.4 Review of Angular Momentum Conservation Statements
  • 6.5 Rigid-Body Statics
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 6.6 Fluid Statics
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 6.7 Isolated, Steady-State Systems
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 6.8 Steady-State Systems with Movement of Mass Across System Boundaries
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 6.9 Unsteady-State Systems
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 6.10 Reynolds Number
  • Problem:
  • Solution:
  • 6.11 Mechanical Energy Accounting and Extended Bernoulli Equations
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 6.12 Friction Loss
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • 6.13 Bernoulli Equation
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Summary
  • References
  • Problems
  • CHAPTER 7 Case Studies
  • Case Study A
  • Breathe Easy: The Human Lungs
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • References
  • Problems
  • Part I—Pulmonary Air Flow
  • Part II—Modeling the Lungs
  • All Cases
  • Case I
  • Case II
  • Case III
  • Case IV
  • Part III—Diseases of the Lungs
  • Part IV—Heart–Lung Bypass System
  • Case Study B
  • Keeping the Beat: The Human Heart
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • References
  • Problems
  • Part I—Focus on the Heart
  • Part II–Electrical Activity of the Heart
  • Part III—The Circulatory System
  • Part IV—Focus on Transport at the Capillary Level
  • Part V—Design of Heart Assist Devices
  • Case Study C
  • Better than Brita®: The Human Kidneys
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • Problem:
  • Solution:
  • References
  • Problems
  • Part I—Kidney Function
  • Part II—Modeling the Nephron
  • Part III—Kidney Diseases and the Hemodialysis Machine
  • APPENDIX A List of Symbols
  • APPENDIX B Factors for Unit Conversion
  • APPENDIX C Periodic Table of the Elements
  • APPENDIX D Tables of Biological Data
  • APPENDIX E Thermodynamic Data
  • Index

What makes us different?

• Instant Download

• Always Competitive Pricing

• 100% Privacy

• FREE Sample Available

• 24-7 LIVE Customer Support